

NEWS RELEASE

Roscan Gold Intersects 3.43 gpt gold over 23m in Mankouke Central and 1.55 gpt gold over 31 meters in Mankouke South

Gold mineralization continuity confirmed between MS1 and MS3

Toronto, Ontario. – January 10, 2023 – Roscan Gold Corporation ("Roscan" or the "Company") (TSX-V:ROS; FSE:20J; OTCQB:RCGCF) is pleased to announce positive drilling results (Figures 1 and 4) from an additional program consisting of 41 Reverse Circulation ("RC"), 14 Air Core (AC) and 2 Diamond Drilling ("DD") holes totaling 6,153 meters (m) at our Southern Mankouke Zone.

The results confirm additional mineralization and the continuity of mineralization between the main mineral resources of MS1 and its satellite at MS3. In addition, significant mineralization near the surface and in the fresh rock at depth, allows for a southern pit shell extension with the capturing of these potential additional ounces.

Drilling Highlights:

Mankouke South

- 1.1 gpt gold over 29m from drill hole RCMan22-0094 from 8m
 - including **5.15** gpt gold over 1m from 32 m
 - and 1.55 gpt gold over 31m from 103m
 - including 5.36 gpt over 4m from 107m
- 1.07 gpt gold over 29m from drill hole DDMan22-140 from 0m
 - including 3.8 gpt gold over 3m from 0m
- 1.39 gpt gold over 16m from drill hole DDMan22-139 from 80m
 - and 1.64 gpt gold over 10m from 328.5m
- 1.27 gpt gold over 15m from drill hole RCMan22-0089 from 69m
 - Including 4.87 gpt gold over 2m from 72m
- 1.23 gpt gold over 9m from drill hole RCMan22-0091 from 10m
 - and 1.94 gpt gold over 4m from 115m
 - including 4.05 gpt over 1m from 118m
- 1.42 gpt over 6m from drill hole RCMan22-0085 from 163m
 - Including 5.03 gpt gold over 1m from 167m
- 1.02 gpt gold over 8m from drill hole RCMan22-0090 from 155m

- 1.13 gpt gold over 6m from drill hole RCMan22-0082 from 138m
 - including 4.41 gpt gold over 1m from 142m
 - and 1.82 gpt gold over 6m from 160m
 - including 4.08 gpt gold over 2m from 160m

Mankouke Central

- 3.43 gpt gold over 23m from drill hole RCMan22-0107
 - Including 5.19 gpt gold over 13m from 7m
- **1.76** gpt gold over **8m** from drill hole **RCMan22-0108** from 33m
- 1.4 gpt gold over 10m from drill hole ACMan21-1253 from 0m
- 1.46 gpt gold over 9m from drill hole RCMan22-0104 from 0m
- 1.11 gpt gold over 10m from drill hole ACMan21-1255 from 22m

Notes: 1: True width yet to be determined, 2: Table 1 – Assay Highlights, 3: 0.5gpt used as cut-off with 4m internal dilution for drill holes, and 4: No top-cut.

Nana Sangmuah, President and CEO, stated, "These additional infill drill results and step out drill results point to further growth in our resource footprint declared in our maiden Mineral Resource Estimate (MRE). We are encouraged by the continuity and high-grade mineralization at our flagship Mankouke South target, which should be the core for establishing an economic stand-alone project at Kandiole. The \sim 30Mt of the resource estimation established so far at Kandiole, indicates that this project is on track to be a potential low strip high-margin oxide operation with potential for significant sulphide feed at depth, which should bolster project economics".

Mankouke South (MS1-MS3)

The last drilling campaign at Mankouke South confirmed a strike length of gold mineralization of 1.1 km, with 150m in the thickest portion, and with 360m vertical depth. The gold mineralized body of Mankouke South represents 66% of the total resource estimates of the Kandiole project with an average gold grade of 1.6g/t at 0.5 g/t cut-off (June 8, 2022, Press Release) within a pit of 315m for the deepest part and with an average strip ratio of 2.7:1.

These gold intercepts add to the upside potential of current mineral resources within applied \$1,500 USD pit shell design (*June 8, 2022, Press Release*), as well as in the MS1-MS3 connection in the Southern part. The next drilling program goal will be the development of these gold extensions to include them into the next resource estimation update.

The gold results, along with the felsic intrusive occurrence carrying the mineralization, support the thesis of continuity of the model at depth, bringing together MS1 and MS3 into one mineralized body, which remains open. The gold is also associated with a brittle structure, yielding a strongly altered brecciation visible, for example in the DDMan22-139.

The North-West fence exploration indicates a possible extension of gold mineralization in the NW direction at MS3.

The structural and airborne geophysics interpretations, in addition to the extrapolation of the Siribaya mineralized parallel zones (Zone A and B) in the southern permit, suggest a possible gold mineralization duplication in the unexplored zone at East of MS1. Several reconnaissance holes are planned.

Mankouke Central

The Mankouke Center gold mineralization, located 4km North from Mankouke South, occurs as the thick gold enrichment at the surface (35m width) and a possible continuity of the mineralization root of this to the East.

At Mankouke Central the gold mineralization strike length reached 420m. The root is pinching around 90 m vertical depth. The mineralization could pinch, as in Mankouke South, in the base of the clastic sediment package, and resumes at depth, around the felsic intrusion, where the fractured to the brecciated zone is mineralized.

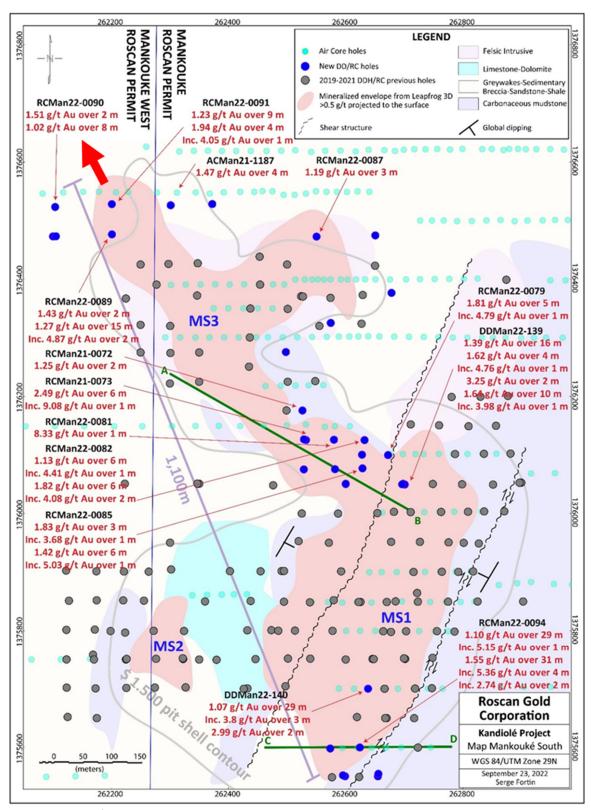


Figure 1: Plan View of the Mankouke South Drilling (MS1, MS2 and MS3)

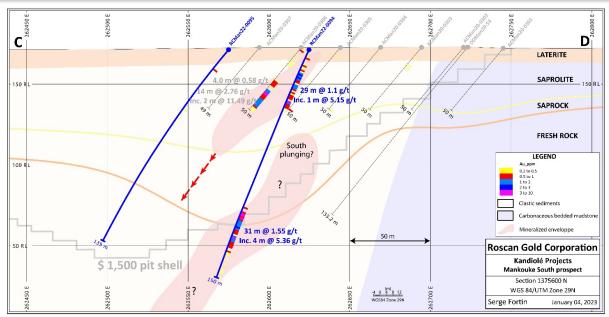


Figure 2: Cross Section Depicting Depth Extension with RCMan22-0094 at MS1 Section 1375600

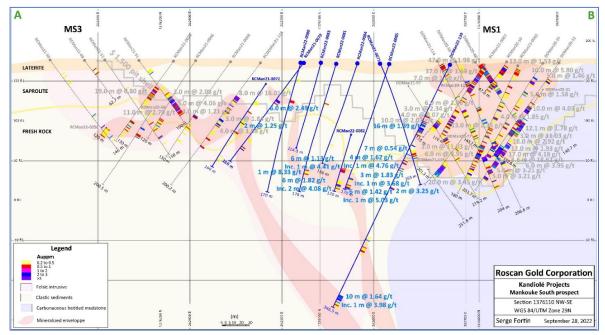


Figure 3: NW-SE Cross Section, link between MS1and MS3

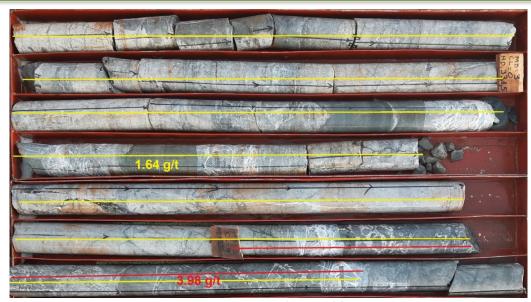


Figure 4: DDMan22-139 photo gold intercepts

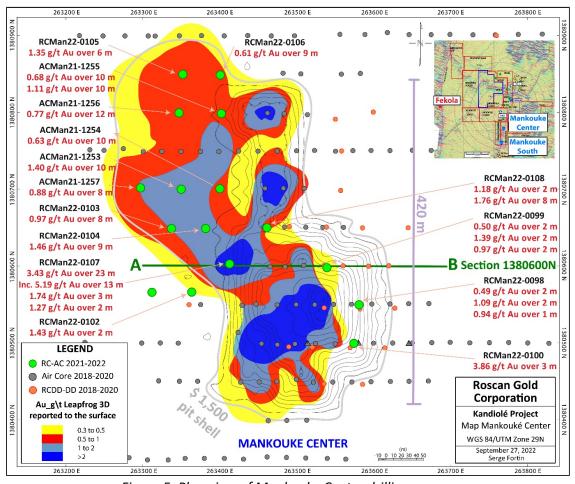


Figure 5: Plan view of Mankouke Center drilling

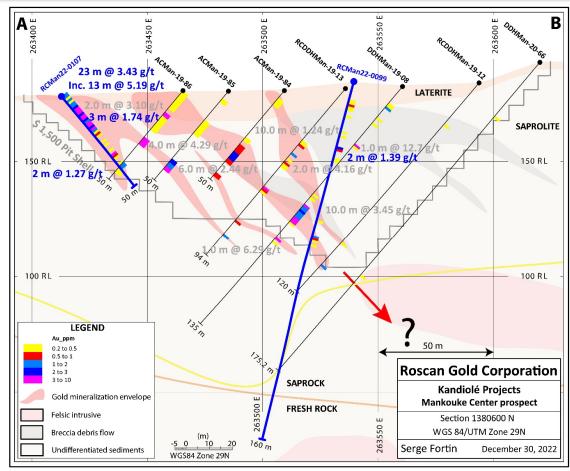


Figure 6: Mankouke Center cross section 1380600N

Geology

The pull-apart basin disseminated gold mineralization type, repeated from Siribaya/Mankouke South/Mankouke Central/Kabaya and further the Oklo's deposits in the continuous structural corridor, well-marked on the airborne geophysics magnetic and electromagnetic surveys, demonstrate a major regional structure occurrence over more than 40 km, open toward the South and the North, underneath the upper Proterozoic sandstone. The gold-bearing structure size at the surface suggests a deep sheared zone favoring the acid intrusions comings accompanied by the different hydrothermal phases carrying alteration and gold. Some additional deep holes are needed to evaluate the high-grade gold potential along this major structural corridor.

The Mankouke South disseminated gold mineralization is located within the brittle zone above a footwall unit of finely banded and alternating graphitic shale and limestone referred to as the carbonaceous bedded mudstone. The gold mineralization is associated with faults zones, quartz veins, and breccias, as well as a strong alteration, mainly albite, silicification, ankerite, and chlorite, with sulfite occurrences (pyrite, arsenopyrite). In MS1, as well as MS3, the felsic intrusion seems to play a major role in gold mineralization.

The gold mineralization at Mankouke Center is also disseminated in the clastic sediment unit strongly saprolitized, mainly associated with debris flow lithology in the vicinity of a felsic intrusion.

Drilling and Analytical Protocol

Roscan uses Geodrill Reverse Circulation (RC) to drill until maximum 170m to reach the target and Foraco to drill diamond hole, using PQ size rods in the saprolite and HQ size in the fresh rock.

The DD and RC samples have been sent for preparation to the ALS Laboratories in Bamako, Mali and assayed at their analytical facilities to Ouagadougou for 1 kg Bottle Roll for DD and 2kg Bottle Roll for RC with atomic absorption finish including tail analysis by 50g Fire Assays for results more than 0.05ppm. AC samples were prepared by Bureau Veritas Bamako and sent to Bottle analysis at their Abidjan Laboratory. Roscan applied industry-standard QA/QC procedures to the program using reference materials, blanks, standards, and duplicates.

Mankouke South

			1					
Hole ID	From (m)	To (m)	Interval (m)	gpt Au	Comment			
ACMan21-1187	0.0	2.0	2.0	0.54	Laterite			
	6.0	10.0	4.0	1.47	Laterite			
ACMan21-1188	56.0	58.0	2.0	0.59	Fresh Rock			
ACMan21-1234	10.0	12.0	2.0	0.99	Overburden			
ACMan21-1238	14.0	16.0	2.0	1.31	Overburden			
ACMan21-1252	10.0	12.0	2.0	2.24	Laterite			
ACMan21-1253	0.0	10.0	10.0	1.40	Laterite			
ACMan21-1254	0.0	10.0	10.0	0.63	Laterite			
ACMan21-1255	0.0	6.0	6.0	0.87	Laterite			
	14.0	16.0	2.0	0.52	Saprolite			
	22.0	32.0	10.0	1.11	Saprolite			
ACMan21-1256	0.0	12.0	12.0	0.77	Laterite - Saprolite			
ACMan21-1257	0.0	8.0	8.0	0.88	Laterite - Saprolite			
DDMan22-139	72.0	74.0	2.0	0.95	Saprolite			
	80.0	96.0	16.0	1.39	Saprolite			
	99.0	100.0	1.0	0.64	Saprolite			
	114.0	115.0	1.0	2.07	Saprolite			
	127.0	128.0	1.0	1.96	Saprolite			
	136.0	137.0	1.0	0.55	Fresh Rock			
	139.0	141.0	2.0	0.90	Fresh Rock			
	147.5	151.5	4.0	1.62	Fresh Rock			
including	147.5	148.5	1.0	4.76	Fresh Rock			
meraamg	175.5	177.5	2.0	3.25	Fresh Rock			
	249.5	250.5	1.0	1.43	Fresh Rock			
	259.5	260.5	1.0	0.65	Fresh Rock			
	264.5	266.5	2.0	0.69	Fresh Rock			
	328.5	338.5	10.0	1.64	Fresh Rock			
including	334.5	335.5	1.0	3.98	Fresh Rock			
DDMan22-140	0.0	29.0	29.0	1.07	Laterite-Saprolite			
including	0.0	3.0	3.0	3.80	Laterite Saprolite			
meraamg	39.0	40.0	1.0	1.39	Saprolite			
	93.0	95.0	2.0	2.99	Saprock			
	105.0	106.0	1.0	0.62	Saprock			
	110.0	112.0	2.0	0.80	Saprock			
RCMan21-0071	122.0	129.0	7.0	0.54	Saprolite - Saprock-Fresh Rock			
RCMan21-0072	58.0	60.0	2.0	0.48	Saprolite			
NCIVIAIIZI-0072	74.0	75.0	1.0	0.80	Saprolite			
	90.0	92.0	2.0	1.25	Saprolite			
	105.0	108.0	3.0	0.59	Saprolite			
RCMan21-0073	59.0	65.0	6.0	2.49	Saprolite			
including	60.0	61.0	1.0	9.08	Saprolite			
meraanig	135.0	136.0	1.0	0.72	Fresh Rock			
	138.0	139.0	1.0	2.19	Fresh Rock			
RCMan21-0075	34.0	35.0	1.0	0.54	Saprolite			
RCMan21-0076	11.0	12.0	1.0	1.04	Laterite			
RCMan21-0077	30.0	31.0	1.0	0.72	Saprolite			
NCIVIAIIZI-UU//	100.0	101.0						
			1.0	0.85	Fresh Rock			
	103.0	104.0	1.0	0.54	Fresh Rock			
	110.0	113.0	3.0	0.99	Fresh Rock			
DCM22 CCTC	153.0	163.0	10.0	0.68	Fresh Rock			
RCMan22-0078	33.0	41.0	8.0	0.75	Saprolite			
	46.0	47.0	1.0	0.98	Saprolite			

Table 1: Drillhole Highlights at Mankouke South

Mankouke South

Hole ID	From (m)	To (m)	Interval (m)	gpt Au	Comment		
RCMan22-0079	34.0	39.0	5.0	1.81	Saprolite		
including	34.0	35.0	1.0	4.79	Saprolite		
RCMan22-0080	49.0	52.0	3.0	0.87	Saprolite		
RCMan22-0081	52.0	53.0	1.0	0.56	Saprolite		
	141.0	142.0	1.0	8.33	Fresh Rock		
	146.0	147.0	1.0	0.53	Fresh Rock		
RCMan22-0082	138.0	144.0	6.0	1.13	Fresh Rock		
including	142.0	143.0	1.0	4.41	Fresh Rock		
	160.0	166.0	6.0	1.82	Fresh Rock		
including	160.0	162.0	2.0	4.08	Fresh Rock		
RCMan22-0084	135.0	136.0	1.0	1.36	Saprolite		
RCMan22-0085	154.0	157.0	3.0	1.83	Fresh Rock		
including	154.0	155.0	1.0	3.68	Fresh Rock		
	163.0	169.0	6.0	1.42	Fresh Rock		
including	167.0	168.0	1.0	5.03	Fresh Rock		
RCMan22-0087	109.0	110.0	1.0	1.37	Fresh Rock		
	133.0	136.0	3.0	1.19	Fresh Rock		
RCMan22-0088B	72.0	77.0	5.0	0.51	Saprolite		
	89.0	97.0	8.0	0.58	Saprolite-Fresh Rock		
DCM22 0000	102.0	104.0	2.0	0.75	Fresh Rock		
RCMan22-0089	11.0 15.0	12.0 17.0	1.0 2.0	0.51 1.43	Laterite Saprolite		
	29.0	30.0	1.0	0.60	Saprolite		
	47.0	48.0	1.0	1.36	Saprolite		
	53.0	65.0	12.0	0.66	Saprolite		
	69.0	84.0	15.0	1.27	Saprock - Saprolite		
including	72.0	74.0	2.0	4.87	Saprock		
RCMan22-0090	8.0	9.0	1.0	0.56	Laterite		
	62.0	64.0	2.0	1.51	Saprock		
	155.0	163.0	8.0	1.02	Fresh Rock		
RCMan22-0091	10.0	19.0	9.0	1.23	Laterite - Saprolite		
	43.0	44.0	1.0	1.06	Saprolite		
	61.0	62.0	1.0	0.55	Saprock		
	81.0	82.0	1.0	0.54	Fresh Rock		
	115.0	119.0	4.0	1.94	Fresh Rock		
including	118.0	119.0	1.0	4.05	Fresh Rock		
	123.0	124.0	1.0	0.66	Fresh Rock		
	166.0	167.0	1.0	0.60	Fresh Rock		
RCMan22-0094	3.0	4.0	1.0	0.60	Laterite		
to all office	8.0	37.0	29.0	1.10	Laterite		
including	32.0	33.0	1.0	5.15	Saprolite		
inaludina	103.0	134.0	31.0	1.55	Saprock-Fresh Rock		
including	107.0 122.0	111.0 124.0	4.0 2.0	5.36 2.74	Saprock Fresh Book		
including					Fresh Rock		
RCMan22-0095	12.0	13.0	1.0	0.90	Mottled Zone		
RCMan22-0096B	27.0	28.0	1.0	1.20	Saprolite		

Table 2: Drillhole Highlights at Mankouke South

Mankouke Center

Hole ID	From (m)	To (m)	Interval (m)	gpt Au	Comment
ACMan21-1253	0.0	10.0	10.0	1.40	Saprolite
ACMan21-1254	0.0	10.0	10.0	0.63	Saprolite
ACMan21-1255	0.0	10.0	10.0	0.68	Saprolite
	22.0	32.0	10.0	1.11	Saprolite
ACMan21-1256	0.0	12.0	12.0	0.77	Saprolite
ACMan21-1257	0.0	8.0	8.0	0.88	Saprolite
RCMan22-0098	37.0	39.0	2.0	0.49	Saprolite
	93.0	95.0	2.0	1.09	Saprolite
	102.0	103.0	1.0	0.94	Saprolite
RCMan22-0099	10.0	12.0	2.0	0.50	Saprolite
	29.0	31.0	2.0	1.39	Saprolite
	69.0	71.0	2.0	0.97	Saprolite
RCMan22-0100	73.0	76.0	3.0	3.86	Saprolite
RCMan22-0102	1.0	3.0	2.0	1.43	Saprolite
RCMan22-0103	0.0	8.0	8.0	0.97	Saprolite
RCMan22-0104	0.0	9.0	9.0	1.46	Saprolite
RCMan22-0105	0.0	6.0	6.0	1.35	Saprolite
RCMan22-0106	0.0	9.0	9.0	0.61	Saprolite
RCMan22-0107	0.0	23.0	23.0	3.43	Saprolite
including	7.0	20.0	13.0	5.19	Saprolite
	33.0	36.0	3.0	1.74	Saprolite
	39.0	41.0	2.0	1.27	Saprolite
RCMan22-0108	15.0	17.0	2.0	1.18	Saprolite
	33.0	41.0	8.0	1.76	Saprolite

Table 3: Drillhole Highlights at Mankouke Center

Mankouke South							
Hole ID	X Collar	Y Collar	Zcolar	Section	AZM	DIP	EOH
ACMan21-1187	262312	1376548	177	1376550	270	-50	66.0
ACMan21-1188	262278	1376548	177	1376550	270	-50	66.0
ACMan21-1234	262260	1376626	174	1376625	270	-50	70.0
ACMan21-1238	264100	1376658	143	1376660	270	-50	80.0
ACMan21-1252	264075	1376227	145	1376230	270	-50	64.0
ACMan21-1253	263349	1380699	184	1380700	90	-50	80.0
ACMan21-1254	263400	1380700	187	1380700	90	-50	80.0
ACMan21-1255	263400	1380800	186	1380800	90	-50	80.0
ACMan21-1256	263350	1380800	182	1380800	90	-50	80.0
ACMan21-1257	263298	1380703	181	1380700	90	-50	80.0
DDMan22-139	262701	1376050	170	1376050	270	-60	346.5
DDMan22-140	262638	1375700	171	1375700	270	-60	152.5
RCMan21-0071	262600	1376050	172	1376050	90	-65	163.0
RCMan21-0072	262526	1376176	172	1376175	270	-50	160.0
RCMan21-0073	262532	1376126	173	1376120	270	-50	160.0
RCMan21-0074*	262678	1376377	169	1376375	270	-50	150.0
RCMan21-0075	262498	1376276	172	1376275	270	-50	175.0
RCMan21-0076	262574	1376325	169	1376325	270	-50	170.0
RCMan21-0077	262628	1376100	171	1376100	270	-50	170.0
RCMan22-0078	262696	1376050	171	1376050	90	-75	134.0
RCMan22-0079	262672	1376100	171	1376100	90	-60	130.0
RCMan22-0080	262529	1376127	173	1376125	270	-70	170.0
RCMan22-0081	262580	1376126	172	1376125	270	-70	170.0
RCMan22-0082	262632	1376125	171	1376125	270	-70	170.0
RCMan22-0083*	262529	1376075	173	1376075	270	-70	170.0
RCMan22-0084	262582	1376076	172	1376075	270	-70	136.0
RCMan22-0085	262629	1376077	171	1376075	270	-70	170.0
RCMan22-0086*	262650	1376475	168	262650	270	-50	160.0
RCMan22-0087 RCMan22-0088	262550 262101	1376473 1376473	168 172	262550 262101	270 270	-50 -50	170.0 100.0
RCMan22-0088B	262101	1376473	172	262101	270	-50	110.0
RCMan22-0089	262201	1376476	173	262201	90	-53	105.0
RCMan22-0090	262104	1376523	171	262104	90	-50	170.0
RCMan22-0091	262201	1376528	172	262201	90	-50	168.0
RCMan22-0092*	262301	1376526	171	262301	90	-50	95.0
RCMan22-0093*	262372	1376528	171	262372	90	-50	120.0
RCMan22-0094	262624	1375600	169	262624	270	-65	150.0
RCMan22-0095	262574	1375598	169	262574	270	-50	139.0
RCMan22-0096	262655	1375551	168	262655	270	-60	150.0
RCMan22-0096B	262656	1375555	168	262656	270	-60	147.0
RCMan22-0097*	262599	1375551	168	262599	270	-50	57.0
RCMan22-0097B	262595	1375553	168	262595	270	-50	130.0
		•					
Mankouke Cente			45=	1005			95-
ACMan21-1253	263349	1380699	187	1380700	90	-50	80.0
ACMan21-1254	263400	1380700	186	1380700	90	-50	80.0
ACMan21-1255	263400	1380800	183	1380800	90	-50	80.0
ACMan21-1256	263350	1380800	178	1380800	90	-50	80.0
ACMan21-1257	263298	1380703	190	1380700	90	-50	80.0
RCMan22-0098	263581	1380550	186	1380550	270	-65	170.0
RCMan22-0099	263539	1380598	185	1380600	270	-75	160.0
RCMan22-0100	263574	1380500	184	1380500	270	-70	155.0
RCMan22-0101	263312	1380566	159	1380565	90	-50	50.0
RCMan22-0102	263364	1380566	163	1380565	90	-50	50.0
RCMan22-0103	263337	1380649	178	1380650	90	-50	50.0
RCMan22-0104	263382	1380649	181	1380650	90	-50	50.0
RCMan22-0105	263352	1380849	174	1380850	90	-50	50.0
RCMan22-0106	263401	1380849	177	1380850	90	-50	50.0
RCMan22-0107	263413	1380603	178	1380600	90	-50	50.0
RCMan22-0108	263461	1380650	183	1380650	90	-50	50.0

^{*} no significant results

Table 4: Drillhole ID at Mankouke

Qualified Person (QP) and NI43-101 Disclosure

Greg Isenor, P. Geo., Director for the Company, is the designated Qualified Person for this news release within the meaning of National Instrument 43-101 ("NI 43-101") and has reviewed and verified that the technical information contained herein is accurate and approves of the written disclosure of same.

About Roscan

Roscan Gold Corporation is a Canadian gold exploration company focused on the exploration and acquisition of gold properties in West Africa. The Company has assembled a significant land position of 100%-owned permits in an area of producing gold mines (including B2 Gold's Fekola Mine which lies in a contiguous property to the west of Kandiole), and major gold deposits, located both north and south of its Kandiole Project in West Mali.

For further information, please contact:

Nana Sangmuah

President & CEO Tel: (902) 832-5555 Email: info@Roscan.ca

Forward Looking Statements

This news release contains forward-looking information which is not comprised of historical facts. Forward-looking information is characterized by words such as "plan", "expect", "project", "intend", "believe", "anticipate", "estimate" and other similar words, or statements that certain events or conditions "may" or "will" occur. Forward-looking information involves risks, uncertainties and other factors that could cause actual events, results, and opportunities to differ materially from those expressed or implied by such forward-looking information. Factors that could cause actual results to differ materially from such forward-looking information include, but are not limited to, changes in the state of equity and debt markets, fluctuations in commodity prices, delays in obtaining required regulatory or governmental approvals, and other risks involved in the mineral exploration and development industry, including those risks set out in the Company's management's discussion and analysis as filed under the Company's profile at www.sedar.com. Forward-looking information in this news release is based on the opinions and assumptions of management considered reasonable as of the date hereof, including that all necessary governmental and regulatory approvals will be received as and when expected. Although the Company believes that the assumptions and factors used in preparing the forward-looking information in this news release are reasonable, undue reliance should not be placed on such information. The Company disclaims any intention or obligation to update or revise any forward-looking information, other than as required by applicable securities laws.

Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.